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Approximation of Chronopotentiometric Responses by
Orthogonal Collocation

B. Stanley Pons

Present Address:
Department of Chemistry
University of Alberta
Edmonton, Alberta T6G 2G2

Abstract

High accuracy simulations of chronopotentiometric responses are
demonstrated for several electruchemical mechanisms. Derivation of the
discretized equations for simple electron transfer and the EC mechanisms
are given. The equations for other mechanisms are tabulated.
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The advantages in using the orthogonal collocation technique for

the simulation of second order partial differential equations de-
(1,2)

scribing electrochemical diffusion problems have been reported

The discretized equations have been derived for several electro-

chemical mechanisms under the control of chronoamperometric
(1-4)

and cyclic voltammetric (5 ) programs. This paper presents the

discretized equations necessary to simulate the chronopotentiometric

response for two mechanisms. Extension of the technique to more

complicated mechanistic schemes is shown to be straightforward, and

the appendix contains further examples.

Symbol Definition

[A); [B]; etc. Molar concentrations of species A, B, etc.

[AO] Bulk concentration (initial) of species A

A. .; Bi, Discretization coefficients(
1 5 )

2A Electrode area, cm

DT/Z 2

CA; CB; etc. [A]/[A0 ]; [B]/[A*]; etc.

DA; DB; etc. Diffusion coefficients of species A, B, etc.

D = DA = DB = Dc, etc.

aij Kronecker delta (= 1 if i = j; = 0 if i ' j)

E Potential

EQ Standard potential

F Faraday

i Current., amperes

J.,. Elements of the Jacubian matrix

K Homogetr-ous equilibrium constant

k Homoge.% ,ois rate constant

n Ni3mber of electrons transferred

N Order cf polillti. used



Symbol Definition

R Gas Constant

TO Temperature

T Time, seconds

T Chronopotentiometric transition time

X Perpendicular distance from electrode surface (cm)

x x/Z

Xi Roots of orthogonal polynomial (Legendre)

z Distance in solution from electrode surface where
diffusional effects are negligible during time of~experiment

Simple Reversible Charge Transfer

ne
A( 1)

This mechanism is considered fot the planar diffusion case

where initially only species A is present. At t = 0, a constant

current i is applied to the cell, and the potential-time plot is

recorded, noting the transition time T. The response is given

analytically by(6)

E= o RT' n (2)nF r _T

Although this solution is fully adequate for describing the

response after corrections for charging, derivation of the discretized

collocation equations'will be given so as to exemplify the procedure

that is followed for developing the approximation of the respons-s

of more comp3icattd mechanisms.



The diffusion equations and boundary conditions describing this

experiment are

[A= D 2 A] 3

6T A6X 2

81[B] = D a2[B] 4)

6T B 6x 2

[A]x,0 = [A]Gt =[Ao] (5)

[B]x 0 = [B]., t = 0 (6)

D-D A  7)

D - DB (8)

A\-oB x )x=o

E = E - RV in [B]xo (11)nF [A) x=0

Insertion of the dimensionless variables for concentration,

distance, and time into (3) and (4) gives

[A] 6 cA D[A]6 2c A. ....-. 2.. (12)
T St z 2 6x2

AJCB = .' cB (13)
Z e ?26x2'r .



and after simplifying,

=c 0 2 A (14)

at 6x'

'CB '- !CB (15)

The boundary conditions (5)-(7) are treated similarly and become:

CA(ko) = 1 CA (1,t). = 1 (16)

CB (x,O) = 0 c (1,t) = 0 (17)BB

(LCA sc BN(18)
6x ) =O -k6xjx~

The discretization equations for first and second order ordinary

differentials have been given previously~1 ), and are:

dy(x,t) N+2 yx,)(9
dx ix j!1AkjYx.)(9

N+2d 2 xt E B.' .y(x.,t) (20)
dx2  x. j=11)

when evaluated at the roots x. of arL orthogonal polynomrial. (See

computational section.)



Application of (20) to (14) and (15) at the roots of a Legendre

polynomial yield

dcA j N+2

T- x=i j=l 1 , CA(Xjt2

dcB I N2B j (22)

i  j=l

Expanding (21) and (22) partially, we have

dc A N+1
d-Ix = $[Bil cA(0,t) + B i,N+2c A(,t) + _= B i,jcA(x j ,t)]  (23)

dc I i AN+
dt-x = S[BillCB(Ot) + BiN+2cB(l't) + Z B. ,.CB(Xj t)] (24)

1 j=2

Insertion of the boundary conditions (16) and (17) yields

dc A I N+2

at--ix i  O[Bi,lcA(Ot) + Bi,N+2 + X Bi,jcA(Xjrt)] (25)

dcB j N+2

dt Ixi = r[Bi, cB(0t) + E B. i,jCBc(xt) ]  (26)

We need an expression for cA(O,t) and cB (o,t) explicitly. From (20)

applied to the boundary flux condition (18), we have

dcA I N+2

dx x1 O -1 ljCA (Xjlt) (27)

dcB. N+2

-x- Ax JAcB(xjut) (28)j=)



Now# equation (10) is also made dimensionless as follows. Since:

(d[AI [AO] tcA ehv (29)
dXx=O L kdx-/x 1= ehv

/dc_i nFADAJ A JnFA[AO1D (30)
L/dxx1 =0 T (0

Cominngthis expression with (27) and (28), we have

N+l
SA (0 ,t) = Z a icA(x~it) (31)

j=2

N+ 1
SB (0,t) = R -Z aic B (x~it) (32)

j=2

where

A~ iT A 1N+2] '(33)

R A- 1 1 and (34)

aj = 21J (35)j A 1

Substitution of (31) and (32) back into (25).and (26), we have

dcA N+l
j+ Z b ijc A(x..t) ,and (36)

j=2 1)Aj



dc B  N+1
d = T b ijcB(xt) , where (37)

j=2

S = 0[Bi 1Q + B. ] , (38)

T. = 0 B 1R , and (39)

bi j =-Bilaj + B i,j  (40)

Simultaneous solution of the 2N differential equations by the

integration subroutines described previously give accurate and fast

approximations to the consentration profiles of A and B as a function

of time.

The desired response, potential as a function of time, is given

then by equation (11) in the form

E = EO - -- CA(O,t) , (41)

with cB(0,t) and cA(O,t) being supplied at each time integration

step by equations (31) and (32). A comparison of some typical

E-t points from equation (2) and from equation (41) is given in

Table 1, and the simulated plot shown in Figure 1. Only a sixth

order Legendre polynomial (N = 6) was used. Total computational

time for 1000 E-t points was 0.862 seconds (see Computational sec-

(7)tion). may either be deterxriec! explicitly or fixed arbiti-arii?% i

and integrated by splines(2)

EC Mechanismrev _otdn

The extcn ;io1 of the mathi nitics to irncliide kinetic react ions



is immediate. Consider (under the same experimental conditions) the

ECrev mechanism:

ne.
A B

(42)

B -Ck_1

with K = and (43)

X = (k1 + k_1 )t (44)

The diffusion-kinetic equations and boundary conditions de-

scribing the system are:

6[A] 6 2 [A] (45)

-T "A 6x2

6[B] J 62 [B]
6TB = DE - k1 [B] + k 1 iC] (46)

6[C] + kl[B] - k 1 [C] (47)
-T C 6X2 1

[A]x, 0  [A] = 0 (A*] (48)

BXo 00[B]x 0 (B] =0 (49)

IC]x,o = [CJCT 0 (50)

A ~x=o = x--o[BD = DB X X=)O (51)



al s-/xi =0o (52)
"C \X X=O

Introducing the dimensionless parameters for concentration,

time, and distance, the following simplified equations are readily

obtained:

6 A a2 CA

at ax 2

6c B  62 CB -atB B - x (I+K) -(cB-Kcc) (54)

at Sx

'ScC  'S2c -
-- 6 6 2- + )i1(+K) -i(CBKCc).(5

CA(X,0) = c=(t) 1 (56)

C(x,0) c B(l't) =0 (57)

c (x,0) cc(lt) = 0 (58)

('cA\ _(B -xl=6 (59)

= 0 o(60)

Equation.- ('3)-(55) are discrotized by equation (20) to y.ield,

after partial cxparsion and substitution of boundary condition

(56)-(58),

dCA(t) N+1
---t-x. = (1BJ C. \(0,1) + B -12 + E BijcA(xjt) ] (61)



dc B (t) IN+I
dt I. = [B ~C (0, t) + E B. C .c(x.Itfl
T 3.x ' j=2 "'j

X)(l+K) C cB(xi~t) K - KC(x.,t)] (62)

dc C(t) =+N+l+

X(l+K) -l [B(xit) - IYcc(xivt.)] (63)

The flux relation (59) is identical to the simple reversible charge

transfer case, and is discretized in precisely the same manner to

yield equations (31) and (32). The flux relation for species c is

equation (60), and is discretized as

(6cc\N+2

6X =0 0 = E A 1 'c (xjit) (64)

N+ 1
= A ,c (0,t) + A cc lit) + Z A 1 c (xit) (65)l, ,N+2 Cj=2 ,C

N+1
=- 1 1 c C (0,t) + E A 1 ,jc C(x.t) (66)

or
N+]

c C(O,t) E a ic C(x.t) (67)
C ~j-2 C)

Substitution of (3]), (32) and (67) into (61), (62), and (63) gik,-s

dcA N+l
= .4 a Z b. . Xj (68)dt x j 2 i xjIA



dcB N+1 -
aF'.-=-T- E b c (x Ot) - A(1+K) C B(xit)-Kcc(xilt)] (69)

1 J=2 B)

dcc N+1 (l+K) c(
.Cxi =b ib j cc(it) + X [cB (xi t) -KcC (xi It )  (70)

Again, simultaneous solution of equations (68)-(70) provide

the time dependent concentration profiles. The chronopotentiometric

response for this mechanism is still given by equation (41) with

the term in parentheses being supplied by equations (31) and (32).

The concentration terms in (31) and (32) however, are now calculated

numerically from equations (68)-(70).

The results of the simulation of this mechanism was compared

to the response given by the analytic solution(6)

E=E0ln T RT' 1  + 1 %K erf[(kl+k )T ]. 71aT.I T T T% + +  +-W) T -1
E = °  n -F-n-q.+(71)

T -T 1r 2[1 +K) (k1+k

The comparison of the two solutions shows that the simulated

results are easily maintained within a relative error of 0.01%

when 0 is chosen by the method described by Rieker and Speiser (7).

Simulations for more complicated mechanisms are formulated

simply by the same procedures used to arrive at equations (68)-(70).

Under similar boundary conditions, the results are quite easily

obtained.

Computa tional

A] simulations were performed on the Amdahl 470V7 computer at

the University of Alberta. The main intogrktion subroutine for the

system of coupled first order ordinary differential equations



((36)-(37) or (68)-(70)) was the same third order semi-implicit

(2)Runge-Kutta method as described previously for "stiff" equations.

The subroutine is very general in usage, and calls three external

(8)subroutines furnished by the user. : the first supplies the algorithm

for the right hand side of the time derivatives of each concen-

tration term (equations (36)-(37) or (68)-(70)), the second is a.

simple output routine for displaying the results and is called

automatically, and the third is a user supplied matrix of the

Jacobian of equations (36)-(37) or (68)-(69), necessary during the

integration.

The elements of the Jacobian matrix are simply the derivatives

of equations (36)-(37) or (68)-(70) with respect to each x. The

matrix elements of the Jacobian for the simple reversible electron

transfer mechanism then are given by:

6 fdcAit)_ x for species A (72)

i xj dt /x 1

and

i,j 6 dcBt) for species B (73)

These are given explicitly by:

6 N4-1a - + Z bi jc (x jit (74)
i'j Tj i j=2 3.,) A

for species A, and

N+l
bX i+ . c (xi (75)ij - j=2 i ' j B t)

for specics B, or finally,



A1b, 1~ + Bj (76)

for both species.

Similarily, the matrix elements of the jacobian for the EC rev

mechanism are given by:

J =~ equation (76) (77)

for species A, and

= Bill A1, + B. - XK(l+K) -1c (xis)i (78)

for species B, where S.. is the Kronecker delta, and
1)

-B A -
= i~ L~i+ B. . K(l+X) c (x.,t)S.

for species C.
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Table 1

E/volts, E/VoltS
Time/s simulated exact

0.0023 0.0771 0.0771

0.0107 0.0556 0.0556

0.0418 0.0351 0.0351

0.1188 0.0167 0.0167

0.3358 -0.0048 -0.0048

0.5055 -0.0227 -0.0227

0.9100 -0.0752 -0.0752

0.9940 -0.1241 -0.1240

Comparison of simulated results with exact
(equation 2) for simple reversible charge
transfer. i = 0.269 ma, Tr = 1.010 s, D
10-5 cm2/sec, [A*] = 1 x 10-6 mole/cm3 ,
T = 25*C, A = 1.000 cm2, linear diffusion,
quiet solution, EO = 0.000 V.



Figure 1: Calcomp digital plot of simulated chronopotentiogram

for simple reversible charge transfer mechanism. See

Table 1 for experimental parameters.
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Appendix

Listed below are the discretized equations for several other

commonly occurring electrochemical mechanisms. As above, it is

assumed that the diffusion is to a planar electrode in quiet

solution, and species A is the only electroactive species present

initially.

Catalytic Mechanism
ne k

A B -- - A + C (80)

dcA Ix N+1
dt S + Z b ,jCB(xjit) - kTcB(xjit) (81)

dc B IN+1
a-l x = Ti + 0Eb ijcB(xt) - kTcB(xj t) (82)

For the E-t profile, equation (11) is used along with equations

(31) and (32), the unknown concentration terms being furnished by

the simultaneous solution of the 2N equations (81) and (82).

Dimerization

ne
A -B

(83)
k 1

2B C
k_3

We let

A ='([Ac]k I + k1 )T, and (84)

K k- - (...



Then

dc A = M+l (6
Si Z b1,jc A(xjut) (6

j=2

dc B T.+N+1 -1K 2cx.t
T b. .1K c (x t)1 Kcc (x.,t)) (7j=2 bij x B C87

dc C N+l2
E b E ' ~c C (x.j t) + X(1+K) ( c B(xi,t) - KcC(x. ,t)) (88)

J=2

Once more, equations (11), (31), and (32) are used for the E-t

profiles. Note that in this case, 3N equations must be solved

because c B(O,t) depends on the concentration of the C species.

Second Order Reaction

he-

k (89)

B + A

X and K are defined as in equations (84) and (85).

-cAS. + a N~ b., c (x.,t) -X(l+K) ( x,-c(.t
dt j!2 ii A (CA (x.t cB 2.'t

Kc C(x ,t)) (90)

dc B N+1
dt T.i + E b i'j cB(xjlt A (l+K) (cA-itcB(it

* J~c (xit)) (1



46

dcc N+l
dt 0j bij c c(x t) + X(1+K) (cA(Xi't) cB(xi't) -Kcc (x.,t)) (92)
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